
The magnetoplasmon spectrum of a weakly modulated two-dimensional electron gas system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 015801

(http://iopscience.iop.org/0953-8984/22/1/015801)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 06:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 015801 (9pp) doi:10.1088/0953-8984/22/1/015801

The magnetoplasmon spectrum of a
weakly modulated two-dimensional
electron gas system
M Tahir1,3, K Sabeeh2 and A MacKinnon1

1 Department of Physics, Blackett Laboratory, Imperial College London, South Kensington
Campus, London SW7 2AZ, UK
2 Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

E-mail: m.tahir06@imperial.ac.uk., ksabeeh@qau.edu.pk and kashifsabeeh@hotmail.com

Received 14 September 2009, in final form 6 November 2009
Published 8 December 2009
Online at stacks.iop.org/JPhysCM/22/015801

Abstract
The magnetoplasmon spectrum of a magnetically modulated two-dimensional electron
gas (2DEG) is investigated. We derive the inter- and intra-Landau-band magnetoplasmon
spectrum within the self-consistent field approach. The derivation is performed at zero
temperature as well as at finite temperature. Results are presented for the inter- and
intra-Landau-band magnetoplasmon spectrum as a function of the inverse magnetic field.
Magnetic Weiss oscillations are found to occur in the magnetoplasmon spectrum as a result of
magnetic modulation. Furthermore, our finite temperature theory facilitates the analysis of
effects of temperature on the magnetoplasmon spectrum. The results are compared with those
obtained for an electrically modulated 2DEG system. In addition, we derive and discuss the
effects of simultaneous electric and magnetic modulations on the magnetoplasmon spectrum of
the 2DEG when the modulations are in phase as well as when they are out of phase. Magnetic
oscillations are affected by the relative phase of the two modulations and the position of the
oscillations depends on the relative strength of the two modulations in the former case while we
find complete suppression of Weiss oscillations for a particular relative strength of the
modulations in the latter case.

1. The magnetoplasmon spectrum of magnetically
modulated two-dimensional electron gas (MM2DEG)

In the past two decades, remarkable progress has been made in
epitaxial crystal growth techniques, which have made possible
the fabrication of novel semiconductor heterostructures. These
modern microstructuring techniques can be used to laterally
confine quasi-two-dimensional electron gas (2DEG) in e.g.,
a GaAs/AlGaAs heterostructure on a submicrometer scale.
Furthermore, magnetic modulation of these systems can be
realized by depositing an array of ferromagnetic strips on top
of the heterostructure or by superconducting layers beneath
the substrate. These magnetically modulated 2DEG systems
realized in semiconductor heterostructures have attracted a lot
of attention in the past and continue to do so today due to their
novel properties [1–28]. Primarily, it is due to the introduction

3 Permanent address: Department of Physics, University of Sargodha,
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of another length scale in the system, the period of modulation,
as a result new phenomena arise due to commensurability of
the period of modulation and the other characteristic length
scale of the system, cyclotron diameter at the Fermi level.
Resistivity measurements on these systems are found to exhibit
commensurability oscillations (magnetic Weiss oscillations)
since the magnetic modulation broadens the Landau levels
into minibands whose width oscillates as a function of the
magnetic field. These oscillations are periodic as a function
of the inverse magnetic field with a larger period than that
of the Shubnikov–de Hass (SdH) oscillations. The period
of Weiss oscillations depends on both the modulation period
and the square root of the number density of the MM2DEG,
in contrast to the linear dependence on the number density
of the SdH oscillations. Moreover, the amplitude of Weiss
oscillations is weakly affected by temperature as compared to
SdH oscillations.

We investigate the effects of magnetic modulation on
the collective excitations (magnetoplasmons) of a 2DEG.
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Plasmons are a very general phenomenon and have been
studied extensively in a wide variety of systems including
ionized gases, simple metals and semiconductor 2DEG
systems. In a 2DEG, these collective excitations are induced by
the electron–electron interactions. These collective excitations,
plasmons, are among the most important electronic properties
of a system. In the presence of an external magnetic field,
these collective excitations are known as magnetoplasmons.
Magnetic oscillations of the plasmon frequency occur in a
magnetic field. Single particle magneto-oscillatory phenomena
such as the Shubnikov–de Haas and de Haas–van Alphen
effects have provided very important probes of the electronic
structure of solids. Their collective analog yields important
insights into collective phenomena. For this reason we study
the effects of magnetic modulation on the collective excitations
(magnetoplasmons) in a 2DEG.

We present the magnetoplasmon spectrum of a MM2DEG
in the presence of a perpendicular magnetic field using the
self-consistent field approach. Both the inter- and intra-
Landau-band magnetoplasmons are determined. Inter-Landau-
band magnetoplasmons arise due to electronic transitions
between different Landau bands whereas intra-Landau-band
magnetoplasmons are a result of electronic transitions in a
single Landau band. We evaluate the dynamic, nonlocal
density–density response function to obtain these results.
The collective excitations in a MM2DEG system have been
investigated in the past [12, 16, 20, 21, 24]. All of these studies
primarily investigate the inter-Landau-band magnetoplasmon
mode. Reference [16] is an experimental study where
the inter-Landau-band magnetoplasmons are investigated by
infrared optical measurements whereas [12, 20, 21, 24] are
theoretical studies. In [12] only the primary inter-Landau-band
magnetoplasmon was considered. Far-infrared absorption of
MM2DEG was theoretically investigated in [20] to explore
plasma oscillations in the system. Similarly plasma oscillations
were also theoretically investigated in [21, 24] taking into
account primarily the inter-Landau-band magnetoplasmons.
Since the existence of an intra-Landau-band magnetoplasmon
is a result of the finite Landau bandwidth caused by
modulation, the study of collective excitations and in particular
modulation induced effects in this system requires taking
into account the intra-Landau-band magnetoplasmons. To
overcome this shortcoming in previous work mentioned
above, we determine both the intra- and inter-Landau-band
magnetoplasmon spectrum in this work. In addition, our
finite temperature theory facilitates the analysis of effects
of temperature on the Weiss and SdH oscillations in the
magnetoplasmon spectrum of MM2DEG. Furthermore, we
carry out a detailed comparison of phase and amplitude of
magnetic Weiss oscillations and the electric Weiss oscillations
in a 2DEG. We also present the effects of simultaneous electric
and magnetic modulations on the magnetoplasmon spectrum
of a 2DEG. To the best of our knowledge, the complete study
of both the inter- and intra-Landau-band magnetoplasmon
spectrum in this system and comparison of these with the
results for the electrically modulated two-dimensional electron
gas system (EM2DEG) [29–32] has not been carried out so far.
To this end, we have undertaken the present study.

In section 2, we present the formulation of the problem.
Section 3 contains the magnetoplasmon spectrum of a
MM2DEG and comparison with an EM2DEG at zero
temperature (T = 0) whereas in section 4 we discuss the
temperature dependence of magnetoplasmon spectrum of a
MM2DEG and its comparison with an EM2DEG including
the asymptotic description. In the following two sections,
magnetoplasmon spectrum in the presence of simultaneous
electric and magnetic modulations is presented. We discuss
the effects of in-phase modulations (electric and magnetic)
in section 5 while out of phase is discussed in section 6.
Concluding remarks are made in section 7.

2. Formulation

The system that we are considering is a 2DEG in the presence
of a perpendicular magnetic field that is modulated weakly and
periodically along one direction. We take the magnetic field B
to be perpendicular to the x–y plane in which electrons with
unmodulated areal density nD , effective mass m∗ and charge
−e are confined. We employ the Landau gauge and write the
vector potential as A = (0, Bx + (B0/K ) sin K x, 0), where K
is 2π/a, a is the period of modulation and B0 is the magnetic
modulation strength such that B0 � B . The Hamiltonian in
the Landau gauge is [5, 8, 26]

H0 = 1

2m∗

[
−�

2 ∂2

∂x2
+

(
−i�

∂

∂y
+eBx+(eB0/K ) sin K x

)2]
.

(1)
Since the Hamiltonian does not depend on the y coordinate, the
unperturbed wavefunctions are plane waves in the y-direction.
This allows us to write for the wavefunctions,

φnky (x̄) = 1√
L y

eiky yun(x), (2)

with L y being a normalization length in y-direction and x̄
a 2D position vector in the x–y plane. The Hamiltonian in
equation (1) can be expressed as

H0 = − �
2

2m∗
∂2

∂x2
+ 1

2
m∗ω2

c (x − x0)
2 + (ω0/K )

× (py + eBx) sin K x + (m∗ω2
0/4K 2)[1 − cos 2K x], (3)

where ωc = eB
m∗ is the cyclotron frequency, ω0 = eB0/m∗ is the

modulation frequency, x0 = −l2ky = − �ky

m∗ωc
is the coordinate

of cyclotron orbit center, l =
√

�

m∗ωc
is the magnetic length,

and m∗ is the effective mass. We can write the unmodulated
eigenstates in the form φnky (x̄) = 1√

L y
eiky yun(x; x0), with

un(x; x0) = (
√

π2nn!l) −1
2 exp(− 1

2l2 (x−x0)
2)Hn(

x−x0
l ), where

un(x; x0) is a normalized harmonic oscillator wavefunction
centered at x0 and Hn(x) are Hermite polynomials with
n the Landau level quantum number [33]. Since we are
considering weak modulation B0 � B , we can apply standard
perturbation theory to determine the first order corrections
to the unmodulated energy eigenvalues in the presence of
modulation

ε(n, x0) = (n + 1/2)�ωc + Gn cos

(
2π

a
x0

)
(4)
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where Gn = �ω0 exp(−u/2)[Ln(u)/2 + L1
n−1(u)], u =

K 2l2

2 = ( 2π
a )2 �

2m∗ωc
and Ln(u), Ll

n−1(u) are Laguerre and
associated Laguerre polynomials. This result has been
obtained previously [5, 8]. The above equation shows that
the formerly sharp Landau levels are now broadened into
minibands by the modulation potential. Furthermore, the
Landau bandwidth (∼|Gn|) oscillates as a function of n, since
Ln(u) is an oscillatory function of its index [33].

Hereafter, we employ the Ehrenreich–Cohen self-
consistent field (SCF) approach to determine the density–
density response function [34]. Following the SCF approach,
�0(q̄, ω) is the density–density response function of the non-
interacting electron system, given by

�0(q̄, ω) = 1

A

∑
n,n′

∑
ky

Cnn′

(
�q̄2

2m∗ωc

)

× f (ε(n′, ky − qy)) − f (ε(n, ky))

ε(n′, ky − qy) − ε(n, ky) + �ω + i�η
, (5)

where

Cnn′(x) = n2!
n1!e−x xn1−n2 [Ln1−n2

n2
(x)]2,

with n1 = max(n, n′), n2 = min(n, n′), f (ε) is the Fermi–
Dirac distribution function, q̄ is the 2D wavenumber, A is
the area of the system, x = �q̄2

2m∗ωc
and Ll

n(x) are associated
Laguerre polynomials. The density–density response function
of the interacting system can be expressed as

�(q̄, ω) = �0(q̄, ω)

1 − vc(q̄)�0(q̄, ω)
(6)

with vc(q̄) = 2πe2

kq̄ is the 2D Coulomb potential, k is the
background dielectric constant. Using the transformation
ky → −ky, realizing that ε(n, ky) is an even function of
ky, interchanging n ↔ n′ we can write the non-interacting
density–density response function given by equation (5) as

�0(q̄, ω) = m∗ωc

π�a

∑
n,n′

Cnn′

(
�q̄2

2m∗ωc

)

×
∫ a

0
dx0 [ f (ε(n, x0 + x ′

0) − f (ε(n′, x0))]
× [ε(n, x0 + x ′

0) − ε(n′, x0) + �ω + i�η]−1. (7)

In writing the above equation we converted the ky-sum into an

integral over x0 and x ′
0 = − �qy

m∗ωc
.

3. Magnetoplasmons modes of MM2DEG and
comparison with EM2DEG at zero temperature

The plasma modes are obtained from the roots of the
longitudinal dispersion relation from equations (6) and (7)

1 − vc(q̄) Re �0(q̄, ω) = 0 (8)

along with the condition Im �0(q̄, ω) = 0 to ensure long-lived
excitations. The roots of equation (8) give the plasma modes
of a MM2DEG as

1 = 2πe2

κ q̄

2

πl2

∑
n,n′

∑
Cnn′(x){I1(n, n′, x ′

0; ω)

+ I1(n, n′, x ′
0; −ω)}, (9)

with

I1(n, n′, x ′
0; ω) = P

∫ a

0
dx0

× f (ε(n, x0))

ε(n′, x0 + x ′
0) − ε(n, x0 + x ′

0) + �ω
, (10)

and P is the principal value. From here on we will only show
the dependence of I1 on ω and suppress the rest such that
I1(n, n′, x ′

0; ω) → I1(ω).

SdH and Weiss oscillations are found to occur in
the magnetoconductivity of both electric and magnetically
modulated 2DEG. These transport measurements can be
explained without taking into account electron–electron
interactions. In order to investigate collective excitations of
the system such as magnetoplasmons it is essential to consider
electron–electron interactions. Magnetoplasmons arise due to
the coherent motion of electrons as a result of electron–electron
interactions. Two types of magnetoplasmons can be identified:
those arising from electronic transitions involving different
Landau bands (inter-Landau-band plasmons) and those within
a single Landau band (intra-Landau-band plasmons). Inter-
Landau-band plasmons involve the local 1D magnetoplasma
mode and the Bernstein-like plasma resonances [35, 36], all
of which involve excitation energies greater than the Landau-
band separation (∼�ωc). On the other hand, intra-Landau-
band magnetoplasmons resonate at energies comparable to the
bandwidths, and the existence of this new class of modes is due
to finite width of the Landau levels. In a MM2DEG considered
here, the Landau bandwidth (∼|Gn|) oscillates as a function of
the band index n, since Ln(u), Ll

n(u) are oscillatory functions
of the index n. Such oscillating bandwidths affect the plasmon
spectrum of the intra-Landau-band type, when Landau-band
separation is larger than the bandwidth as is the case considered
here, resulting in magnetic Weiss oscillations similar to the
electric Weiss oscillations found in the electrically modulated
system. These oscillations are accompanied by SdH type
of oscillatory behavior [29, 37]. Both these oscillations are
periodic as a function of inverse magnetic field (1/B) but
occur with different periods and amplitudes. As we show
below, Weiss oscillations in the magnetoplasmon spectrum of
a MM2DEG differ in phase and amplitude with those of an
EM2DEG [29].

We now examine the inter-Landau-band transitions. These
transitions occur between different Landau bands so we
consider n 	= n′ in equation (10) which yields

I1(ω) = f (ε(n))

(�ω − 
)
,

where 
 = (ε(n) − ε(n′)) with ε(n) = (n + 1
2 )�ωc, which

permits us to write the following term in equation (9) as

(I1(ω) + I1(−ω)) = 2

 f (ε(n))

(�ω)2 − (
)2
. (11)

Next, we consider the coefficient Cnn′(x) in equation (9) and
expand it to lowest order in its argument (low wavenumber
expansion). In this case, we are only considering the
n′ = n ± 1 terms. The inter-Landau-band plasmon modes
under consideration arise from neighboring Landau bands.

3
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Hence for n′ = n + 1 and x � 1, using the following
associated Laguerre polynomial expansion [38] Ll

n(x) =∑n
m=0(−1)m (n+l)!

(l+m)!(n−m)!
xm

m! for l > 0 and retaining the first
term in the expansion for x � 1, Cnn′(x) reduces to

Cn,n+1(x) → (n + 1)x, (12)

and for n′ = n − 1 and x � 1, it reduces to

Cn,n−1(x) → nx . (13)

Substitution of equations (11)–(13) into (9) and replacing
x = �q̄2

2m∗ωc
yields

1 = 2πe2

km∗ q̄
1

ω2 − ω2
c

(
mωc

π�

∑
n

f (ε(n)

)
.

The term in parenthesis is easily recognized as the
unmodulated particle density nD = mωc

π�

∑
n f (ε(n)), where

the summation is over all occupied Landau bands. Defining
the plasma frequency through ω2

p,2D = 2πnDe2

km q̄, we obtain the

inter-Landau-band plasmon dispersion relation 1 = ω2
p,2D

ω2−ω2
c

or

ω2 = ω2
c + ω2

p,2D, (14)

here ω is the well-known local 2D principal plasma frequency.
Since we are interested in the modulation induced effects on
the magnetoplasmons in this system, our focus will be on the
intra-Landau-band magnetoplasmons as the dispersion relation
for inter-Landau-band magnetoplasmons have been discussed
and results displayed in [12, 29].

For the intra-Landau-band excitations spectrum, we need
to consider transitions within a Landau miniband, i.e. n = n′,
ε(n′) − ε(n) = 0 and Cnn′(x) → 1. An analytical expression
of the intra-Landau-band plasmon energy �ω̃ can be obtained

�
2ω̃2 = 16e2

kq̄π

m∗ωc

�a
sin2

(
π

a
(x ′

0)

)
An, (15)

where

An =
∑

n

Gn

∫ a/2

0
dx0 f (ε(n, x0)) cos(K x0).

At zero temperature (T = 0),

�
2ω̃2 = 8e2

kq̄

m∗ωc

π�
sin2

(
π

a
(x ′

0)

) ∑
n

|Gn|

×
√

1 − 
2
nθ(1 − 
n), (16)

with 
n = | εF−ε(n)

Gn
|, θ(x) the Heaviside unit step function. If

we replace the magnetic modulation term (Gn) by the electric
one, equation (16) has the same structure as equation (8)
of [29] that pertains to electric modulation. The above
expression for �ω̃ has been obtained under the condition
�ω 
 |ε(n, x0 + x ′

0) − ε(n, x0)| as x ′
0 → 0 which

leads to a relation between the energy and the Landau level
broadening �ω 
 |2Gn sin( π

a x ′
0) sin[( 2π

a )(x0 + x′
0

2 )]|. This
ensures that Im �0(q̄, ω) = 0 and the intra-Landau-band

Figure 1. Intra-Landau-band plasma energy as a function of inverse
magnetic field at zero temperature: the solid line shows the magnetic
modulations case while the dashed line shows the electric
modulations case (final result of [29]). Here the strength of electric
modulations is 0.6 and 0.07 meV for the magnetic modulation.

magnetoplasmons are undamped. For a given Gn , this can be
achieved with a small but nonzero qy (recall that x ′

0 = − �qy

m∗ωc
).

In general, the inter- and intra-Landau-band modes are
coupled for arbitrary magnetic field strengths. The general
dispersion relation is

1 = ω2
p,2D

ω2 − ω2
c

+ ω̃2

ω2
.

This equation yields two modes which are given by

ω2
± = 1

2 (ω2
c + ω2

p,2D + ω̃2) ± 1
2 {(ω2

c + ω2
p,2D + ω̃2

+ 2ωcω̃)(ω2
c + ω2

p,2D + ω̃2 − 2ωcω̃)}1/2

which reduces to

ω2
+ = ω2

c + ω2
p,2D,

and
ω2

− = ω̃2,

with corrections of order ω̃2/ω2
c and ω̃2/ω2

p,2D. So long as
|Gn| < �ωc, mixing of the inter- and intra-band modes is
small. Only the intra-Landau-band mode (�ω̃) will be excited
in the frequency regime �ωc > �ω ∼ |Gn|.

The intra-Landau-band plasma energy given by equa-
tion (11) is shown graphically in figure 1 as a function of 1/B .
The parameters used are [5, 7, 8, 26, 29–31]: m∗ = 0.07me,
k = 12, nD = 3.16 × 1015 m−2, a = 380 nm. We also
take qx = 0 and qy = 0.01kF, with kF = (2πnD)1/2 be-
ing the Fermi wavenumber of the unmodulated 2DEG in the
absence of magnetic field. In numerical evaluation we have
taken the sum over thirty Landau levels which ensures con-
vergence of numerical results. Numerical evaluation of the
dispersion relation was performed in Mathematica. In fig-
ure 1, modulation induced oscillations in the intra-Landau-
band mode are apparent, superimposed on SdH type oscilla-
tions. These oscillations are periodic as a function of inverse
magnetic field (1/B). To gain further insight into the results

4
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presented in figure 1, we consider equation (16). In the regime
�ωc > |Gn|, the unit step function vanishes for all but the
highest occupied Landau band, corresponding, say, to the band
index N . The sum over n is trivial and plasma energy is given
as �ω̃ = |G N |1/2(1 − 
2

N )1/4θ(1 − 
N ). The analytic struc-
ture primarily responsible for the SdH type of oscillations is the
function θ(1−
N ), which jumps periodically from zero (when
the Fermi level is above the highest occupied Landau band) to
unity (when the Fermi level is contained with in the highest
occupied Landau band). On the other hand, the periodic mod-
ulation of the amplitude of the SdH type oscillations is due
to the oscillatory nature of the factor |G N |1/2, which has been
shown to exhibit commensurability oscillations [6, 19, 21, 31].
In the same figure, we also show the intra-Landau-band plasma
energy for the electrically modulated 2DEG [29]. The mag-
netoplasmons spectrum of the MM2DEG at a specific Lan-
dau level is minimum when the corresponding spectrum for
the EM2DEG is maximum, this confirms that magnetic oscil-
lations in the two system are out of phase. To have comparable
results for the two systems, at zero temperature, the strength
of magnetic modulation potential, �ω0, has to be ∼8.5 times
smaller than that of the electric modulation potential, V0. This
can be understood if we realize that this constraint arises due to
the step function θ(1 − 
N ) appearing in the dispersion rela-
tion at zero temperature. Therefore, comparable results for the
two systems when they are subjected to modulation of equal
strength requires that we carry out a finite temperature calcu-
lation to avoid the constraint imposed by the step function at
zero temperature.

4. The temperature dependent magnetoplasmons
mode of MM2DEG and a comparison with EM2DEG

For the finite temperature calculation of the intra-landau-band
plasma energy, we invoke the condition of weak modulation
and perform the following expansion in equation (15)

f (ε(n, x0)) � f (ε(n)) + Gn f ′(ε(n)) cos(K x0), (17)

where f ′(x) = d
dx f (x) is the derivative of the Fermi–Dirac

distribution function. With the substitution of this expansion
in equation (15), the integral over x0 contains two terms. The
integral over x0 of the first term vanishes and the integral of the
second term yields the intra-Landau-band dispersion relation

�
2ω̃2 = 4e2m∗ωc

kq̄π�
sin2

[
π

a
(x ′

0)

]
Bn, (18)

where
Bn =

∑
n

G2
n[− f ′(ε(n))].

To facilitate comparison of the above dispersion relation with
the results obtained for an electrically modulated 2DEG we
will determine the asymptotic expressions of the intra-Landau-
band magnetoplasmon spectrum, where analytic results in
terms of elementary functions can be obtained. Moreover,
these asymptotic expressions will allow us to identify terms
responsible for SdH and Weiss oscillations and how they are
affected by temperature.

The asymptotic expression can be obtained by using
the following asymptotic expression for the Laguerre
polynomials [5, 7, 8, 26]

exp−u/2 Ln(u) → 1√
π

√
nu

cos

(
2
√

nu − π

4

)
. (19)

Note that the above asymptotic expression for Ln(u) is valid
for n 
 1, at low magnetic fields when many Landau Levels
are filled. We now take the continuum limit:

n − − >
ε(n)

�ωc
,

∞∑
n=0

−− >

∫ ∞

0

dε

�ωc
. (20)

In the asymptotic limit, Bn that appears in equation (18) can be
written as

Bn = �
2ω2

0

π�ωc

√
�ωc

u

(
aKF

2π

)2

×
∫ ∞

0

dε√
ε

βg(ε)

[g(ε) + 1)]2
sin2

(
2
√

nu − π

4

)
, (21)

where g(ε) = exp[β(ε − εF)], β = 1
KBT .

Now assuming that temperature is low such that β−1 � εF

and replacing ε = εF+sβ−1, we can express the above integral
as

Bn = �
2ω2

0

π
√

u�ωcεF

(
aKF

2π

)2 ∫ ∞

0
ds

es

[(es + 1)]2

× sin2

(
2

√
uεF

�ωc
− π

4
+

√
u

�ωcεF
sβ−1

)

with the result

Bn = �
2ω2

0

2π
√

u�ωcεF

(
aKF

2π

)2

×
[

1 − A

(
T

Ta

)
+ 2A

(
T

Ta

)
sin2

[
2

√
uεF

�ωc
− π

4

]]
, (22)

where Ta is the characteristic damping temperature of Weiss
oscillation given by kBTa = �ωcaKF

4π2 , T
Ta

= 4π2kB T
�ωcaKF

and A(x) =
x

sinh(x)
−(x−−>∞) − >= 2xe−x .

From equation (18), the asymptotic expression for intra-
Landau-band plasmon spectrum is obtained

�
2ω̃2 = 4�

2ω2
0e2m∗ωc

kq̄�2π2
√

u�ωcεF

(
aKF

2π

)2

sin2

[
π

a
(x ′

0)

]

×
[

1 − A

(
T

Ta

)
+ 2A

(
T

Ta

)
sin2

(
2

√
uεF

�ωc
− π

4

)]
.

(23)

The above expression is not able to account for the SdH
type of oscillations in the magnetoplasmon spectrum. These
oscillations can be accounted for by expressing the density of
states (in the absence of disorder) [5] as

D(ε) = m∗

π�

(
1 − 2 cos

[
2πε

�ωc

])
(24)

and inserting the continuum approximation as
∑∞

n=0 −− >

2πl2
∫ ∞

0 D(ε) dε, this yields the asymptotic expression for

5



J. Phys.: Condens. Matter 22 (2010) 015801 M Tahir et al

Figure 2. Intra-Landau-band plasma energy as a function of inverse
magnetic field at T 0.4 K. Here the strength of electric and magnetic
modulation is the same as 1 meV. Solid and dashed lines represent
magnetically and electrically modulated 2DEG, respectively.

the intra-Landau-band magnetoplasmon dispersion relation for
MM2DEG

�
2ω̃2 = 4�

2ω2
0e2m∗ωc

kq̄�2π2
√

u�ωcεF

(
aKF

2π

)2

sin2

[
π

a
(x ′

0)

]

×
{[

1 − A

(
T

Ta

)
+ 2A

(
T

Ta

)
sin2

(
2

√
uεF

�ωc
− π

4

)]

− 4A

(
T

Ts

)
cos

[
2πεF

�ωc

]
sin2

[
2

√
uεF

�ωc
− π

4

]}
, (25)

where T
Ts

= 2π2kB T
�ωc

, Ts defines the characteristic damping
temperature of the SdH oscillations in the magnetoplasmon
spectrum of MM2DEG.

Following the same approach as discussed above for
MM2DEG, we can obtain the intra-Landau-band magnetoplas-
mon spectrum for EM2DEG

�
2ω̃2 = 4e2m∗ωc

�kq̄π
sin2

[
π

a
(x ′

0)

]
× Bn, (26)

where Bn = ∑
F2

n × [− f ′(ε(n))], and Fn = V0e−u/2 Ln(u) is
the modulation width of the EM2DEG with V0 the amplitude
of electric modulation. The corresponding asymptotic result
for EM2DEG is

�
2ω̃2 = 4V 2

0 e2m∗ωc

kq̄2π2�
√

u�ωcεF
sin2

(
π

a
(x ′

0)

){[
1 − A

(
T

Ta

)

+ 2A

(
T

Ta

)
cos2

(
2

√
uεF

�ωc
− π

4

)]
− 4A

(
T

Ts

)

× cos

[
2πεF

�ωc

]
cos2

[
2

√
uεF

�ωc
− π

4

]}
. (27)

The intra-landau-band plasmon dispersion relations obtained
for the MM2DEG and the EM2DEG systems given by
equations (25) and (27) allow us to identify the terms
responsible for Weiss and SdH oscillations. Moreover,
the characteristic damping temperatures appearing in these
expressions carry the effects of temperature on these
oscillations. Comparing equations (25) and (27), the following
differences can be highlighted:

Figure 3. Intra-Landau-band plasma energy of a MM 2DEG as a
function of the inverse magnetic field at T = 0.3 K (solid line) and
T = 3 K (dashed line)

(i) Amplitude of the oscillations (Weiss and SdH) are larger
by the factor aKF

2π
in MM2DEG compared to those of

EM2DEG.
(ii) The factor sin2[2

√
uεF
�ωc

− π
4 ] that appears in equation (25)

for MM2DEG and the corresponding factor cos2[2
√

uεF
�ωc

−
π
4 ] in equation (27) for EM2DEG results in a π/2
phase difference in the oscillations in the magnetoplasmon
spectrum of the two systems

Since equations (25) and (27) are the key results of this
work, we show the intra-Landau-band magnetoplasmon energy
for both the magnetically and electrically modulated systems
as a function of inverse magnetic field in figure 2. The results
presented are for two modulations of equal strength, which
is taken to be V0 = �ω0 = 1 meV. The temperature is
0.4 K. The rest of the parameters are the same as the case
for the zero temperature results presented in figure 1. We
observe the modulation induced effects in the intra-Landau-
band mode, Weiss oscillations modulating the SdH oscillations
in the magnetoplasmon spectrum. From the figure, we see
that the amplitude of Weiss oscillations in the magnetically
modulated system is greater by a factor of ∼8.5 compared
to the electrically modulated system. This can be seen from
equations (25) and (27) where the difference in the amplitudes
is the factor aKF

2π
and it is ∼8.5 for the parameters that we have

used. Therefore, in the magnetically modulated system the
amplitude is larger by this factor compared to the electrically
modulated system. We also observe that Weiss oscillations
in the MM2DEG are out of phase by π/2 compared to those
in EM2DEG. To see the effects of temperature on Weiss and
SdH oscillations in a MM2DEG, we plot the intra-Landau-
band plasmon energy for a MM2DEG as a function of inverse
magnetic field at two different temperatures in figure 3. The
modulation strength is 1 meV. The results are shown at the
following two temperatures: 0.3 and 3 K. The SdH oscillations
are completely damped at 3 K whereas Weiss oscillations
persist at this temperature. Equations (25) and (27) also allow
us to determine the temperature scales for damping of Weiss
and SdH oscillations in the magnetoplasmon spectrum. For

6
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Temperature= 2 K

Magnetic modulation = 0.03 meV

Electric modulation = 0.2 meV

Figure 4. Intra-Landau-band plasma energy as a function of inverse
magnetic field in the presence of a magnetic and an electric in-phase
modulation (dot–dashed line). Magnetic modulation alone (solid
line), electric modulation alone (dashed line).

a MM2DEG, from equation (25), Ta
Ts

= aKF
2 
 1; e.g.,

nD = 3.16 × 1015 m−2 and a = 380 nm, we have Ta
Ts

= 27
for the experimentally relevant parameters considered here.
Hence, SdH oscillations are completely damped at a much
lower temperature compared to Weiss oscillations. These
results are consistent with and complement those obtained
from electron transport studies of a magnetically modulated
2DEG [5–8, 19–21, 26, 27].

5. The magnetoplasmon spectrum with periodic
electric and magnetic modulation: in phase

In this section, we calculate the magnetoplasmon spectrum
when electric and magnetic modulations are in phase. We take
the magnetic modulation to have the same phase as given in
the previous section with the in-phase electric modulation. The
energy eigenvalues are [5, 26]

ε(n, x0) = (n + 1/2)h̄ωc + (Gn + Fn) cos(K x0) (28)

and the bandwidth can be written as


(in phase) = 2�ω0akF

√
1 + δ2

2π
√

π
√

nu

× sin

(
2
√

nu − π

4
+ �

)
, (29)

where the ratio between the two modulation strengths δ =
2πV0

�ω0akF
= tan(�). The flat band condition from the above

equation is 2
√

nu − π
4 + � = iπ where i is an integer. This

condition can also be expressed as
√

2n
a l = i + 1

4 − �
π

, where
n = nF = εF

h̄ωc
− 1

2 is the highest Fermi integer. We see that the
flat band condition in this case depends on the relative strength
of the two modulations.

Following the same approach as discussed in the previous
section for the MM2DEG, we can obtain the intra-Landau-
band magnetoplasmon spectrum in the presence of in-phase
modulations as

�
2ω̃2 = 4e2m∗ωc

kq̄π�
sin2

[
π

a
(x ′

0)

]
In, (30)

Figure 5. Intra-Landau-band plasma energy as a function of inverse
magnetic field in the presence of a magnetic and an electric in-phase
modulation at T = 2 K. Magnetic modulation is fixed at 0.03 meV
and electric modulation is varied: 0 meV (solid), +0.2 meV (dotted)
and −0.2 meV (dot–dashed line.)

where
In =

∑
n

(Gn + Fn)
2[− f ′(ε(n))].

In figure (4) we show the in-phase magnetoplasmon spectrum
(the magnetic and the electric modulations are in phase) �ω̃

given by equation (30) as a function of the inverse magnetic
field for temperature T = 0.3 K, electron density ne =
3 × 1011 cm−2, the period of modulation a = 380 nm. The
strength of the electric modulation V0 = 0.2 meV whereas
B0 = 0.02 T, which corresponds to �ω0 = 0.03 meV. In the
same figure we have also shown the magnetoplasmon spectrum
when either the magnetic or electric modulation alone is
present. The π

2 phase difference in the bandwidths results in
the same phase difference appearing in the magnetoplasmon
spectrum for electric and magnetic modulations as can be seen
in the figure. To better understand the effects of in-phase
modulations on the magnetoplasmon spectrum we consider the
asymptotic expression of the magnetoplasmon spectrum given
by equation (30). The asymptotic expression is given by

�
2ω̃2 = 2V 2

0 e2m∗ωcδ
−2

kq̄2π2�
√

u�ωcεF
sin2

(
π

a
(x ′

0)

)
(1 + δ2)

×
{[

1 − A

(
T

Ta

)
+

(
2A

(
T

Ta

)
− 4A

(
T

Ts

)

× cos

[
2πεF

�ωc

])
sin2

[
2

√
uεF

�ωc
− π

4
+ �

]}
. (31)

From the asymptotic expression given by equation (31), we
observe that in the presence of in-phase electric and magnetic
modulation the magnetoplasmon energy acquires a dependence
on the phase factor � and δ which depend on the relative
modulation strengths. The shift in the Weiss oscillations when
in-phase electric and magnetic modulations are present can
be seen in figure 5. How the Weiss oscillations are affected
as � as well as the magnetic field is varied can be seen in
figure 5. The results shown are for a fixed magnetic modulation
of strength �ω0 = 0.03 meV and the electric modulation is
varied. The change in V0 results in a corresponding change in
both δ and �. From figure 5, we observe that the position of
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the extrema in the magnetoplasmon spectrum as a function of
the inverse magnetic field depend on the relative strength of the
modulations.

The effects of electric and magnetic modulations that are
out of phase on the magnetoplasmon spectrum can be better
appreciated if we consider the asymptotic expression in this
case. This is taken up in section 6.

6. Magnetoplasmons with periodic electric and
magnetic modulation: out of phase

In this section, we calculate the magnetoplasmon spectrum
when electric and magnetic modulations are out of phase by
π/2. We consider magnetic modulation out of phase with
the electric one: we take the electric modulation to have the
same phase as given in the previous section with the π/2
phase difference incorporated in the magnetic field. The energy
eigenvalues are [5, 26]

ε(n, x0) = (n+1/2)h̄ωc+sin(K x0)Gn +Fn cos(K x0), (32)

and the bandwidth is


(out of phase) = 2�ω0akF

2π
√

π
√

nu

×
√

δ2 + (1 − δ2) sin

(
2
√

nu − π

4

)
. (33)

The term responsible for Weiss oscillations is the sin(2
√

nu −
π
4 ) term under the square root which can be readily seen by
considering the large n limit of the bandwidth. Therefore
for δ = ±1 Weiss oscillations are no longer present in the
bandwidth.

Following the same approach discussed in the previous
section for MM2DEG, we can obtain the intra-Landau-band
magnetoplasmon spectrum in the presence of out-of-phase
modulations as

�
2ω̃2 = 4e2m∗ωc

kq̄π�
sin2

[
π

a
(x ′

0)

]
On, (34)

where
On =

∑
n

(G2
n + F2

n )[− f ′(ε(n))].

The asymptotic expression in the presence of both electric
and magnetic modulations that are out of phase is obtained
by substituting the asymptotic expressions for the Laguerre
polynomials and converting the sum into integration with the
result

�
2ω̃2 = 2V 2

0 e2m∗ωcδ
−2

kq̄2π2�
√

u�ωcεF
sin2

(
π

a
(x ′

0)

){
2δ2 + (1 − δ2)

×
[

1 − A

(
T

Ta

)
+ 2A

(
T

Ta

)
sin2

[
2

√
uεF

�ωc
− π

4

]]

− 4A

(
T

Ts

)
cos

[
2πεF

�ωc

][
δ2 − (δ2 − 1)

× sin2

[
2

√
uεF

�ωc
− π

4

]]}
. (35)

0.1 meV

0.2 meV

0.25 meV

0.5 meV

Figure 6. Intra-Landau-band plasma energy as a function of inverse
magnetic field in the presence of a magnetic and an electric
out-of-phase modulation at T = 2 K. Magnetic modulation is fixed
at 0.03 meV and electric modulation is varied.

From the expression of the out-of-phase bandwidth given by
equation (33) we find that Weiss oscillations in the bandwidth
are absent for relative modulation strength δ = ±1, the
same is reflected in the magnetoplasmon spectrum as the

term responsible for Weiss oscillations (sin2[2
√

uεF
�ωc

− π
4 ])

vanishes for δ = ±1 as can be seen from the above equation.
Therefore the magnetoplasmon spectrum does not exhibit
Weiss oscillations when the relative modulation strength δ =
±1. The spectrum as a function of magnetic field when the
electric and magnetic modulations are out of phase is shown in
figure 6. The results shown are for a fixed magnetic modulation
of strength �ω0 = 0.03 meV and the electric modulation V0

is allowed to vary between positive and negative values. The
other parameters are the same as in figures 4 and 5. As V0

is varied there is a corresponding change in δ. We find that
the positions of the extrema of the spectrum as a function of
the inverse magnetic field do not change as δ is varied since
the phase factor � does not appear in the expression of the
magnetoplasmon spectrum when the two modulations are out
of phase. It is also observed in figure 6 that there is a π

2 phase
difference between the curves for δ � 1 and δ < 1. The same
behavior is observed in the bandwidth which is reflected in the
magnetoplasmon spectrum.

7. Conclusions

In conclusion, we have determined the inter- and intra-
Landau-band magnetoplasmon spectrum for a magnetically
modulated two-dimensional electron gas in the presence
of a perpendicular magnetic field. Our results show
that magnetic Weiss oscillations occur in intra-Landau-band
magnetoplasmon spectrum. Their origin lies in the interplay of
the two physical length scales of the system i.e. the modulation
period, and cyclotron diameter at the Fermi level. When
the strength of the magnetic modulation potential is equal
to the electric one, the magnetic Weiss oscillations in the
magnetoplasmon spectrum are out of phase and occur with a
larger amplitude compared to the electric Weiss oscillations in
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a 2DEG. These results also exhibit that the Weiss oscillations
depend on the temperature much less than that of the SdH
oscillations. We have determined the effects of both the
electric and magnetic modulations on the magnetoplasmon
spectrum of 2DEG. These oscillations are affected by the
relative phase of the two modulations and positions of the
extrema of the oscillations depend on the relative strength of
the two modulations. We find complete suppression of Weiss
oscillations for particular relative strength of the modulations
when the modulations are out of phase.
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